52 lines
1.2 KiB
Python
52 lines
1.2 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
|
|
dataset = pd.read_csv("Restaurant_Reviews.tsv", delimiter="\t", quoting=3)
|
|
|
|
import re
|
|
# import nltk
|
|
from nltk.corpus import stopwords
|
|
from nltk.stem.porter import PorterStemmer
|
|
# nltk.download('stopwords')
|
|
ps = PorterStemmer()
|
|
|
|
corpus = []
|
|
for i in range(0, 1000):
|
|
review = re.sub('[^a-zA-Z]', ' ', dataset['Review'][i])
|
|
review = review.lower()
|
|
review = review.split()
|
|
review = [ps.stem(word) for word in review if not word in set(stopwords.words('english'))]
|
|
review = ' '.join(review)
|
|
corpus.append(review)
|
|
|
|
from sklearn.feature_extraction.text import CountVectorizer
|
|
|
|
cv = CountVectorizer(max_features=1500)
|
|
|
|
X = cv.fit_transform(corpus).toarray()
|
|
|
|
Y = dataset.iloc[:, 1].values
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.20, random_state = 0)
|
|
|
|
from sklearn.naive_bayes import GaussianNB
|
|
|
|
classifier = GaussianNB()
|
|
|
|
classifier.fit(X_train, Y_train)
|
|
|
|
Y_pred = classifier.predict(X_test)
|
|
|
|
print(Y_pred)
|
|
|
|
print(Y_test)
|
|
|
|
count = 0
|
|
for i in range(0,len(Y_pred)):
|
|
if Y_pred[i] == Y_test[i]:
|
|
count += 1
|
|
|
|
print(count / len(Y_pred)) |