import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # 資料預處理 dataset = pd.read_csv("Social_Network_Ads.csv") X = dataset.iloc[:, [2,3]].values Y = dataset.iloc[:, 4].values X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=0) sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # 擬合和預測 from sklearn.svm import SVC classifier = SVC(kernel='linear', random_state=0) classifier.fit(X_train, Y_train) Y_pred = classifier.predict(X_test) # 評估性能 from sklearn.metrics import confusion_matrix cm = confusion_matrix(Y_test, Y_pred) print(cm) # 視覺化 from matplotlib.colors import ListedColormap X_set, y_set = X_test, Y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('orange', 'blue'))(i), label = j) plt.title('Logistic Regression (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()