machine-learning-atoz/section_4_K-means_clustering/main.py

52 lines
1.5 KiB
Python
Raw Normal View History

2024-10-25 11:48:10 +00:00
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# 資料預處理
dataset = pd.read_csv("Mall_Customers.csv")
X = dataset.iloc[:, 3:5].values # 無監督學習,無需應變數
# 獲取 K得到結果 K = 5
from sklearn.cluster import KMeans
# wcss = []
#
# for i in range(1, 11):
# kmeans = KMeans(n_clusters=i, max_iter=300, n_init=10, init='k-means++', random_state=0)
# kmeans.fit(X)
# wcss.append(kmeans.inertia_)
#
# plt.plot(range(1, 11), wcss)
# plt.title('The Elbow Method')
# plt.xlabel('Number of clusters')
# plt.ylabel('WCSS')
# plt.show()
# 開始分析
kmeans = KMeans(n_clusters=5, max_iter=300, n_init=10, init='k-means++', random_state=0)
Y_kmeans = kmeans.fit_predict(X)
print(Y_kmeans)
# 視覺化
plt.scatter(X[Y_kmeans == 0, 0], X[Y_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(X[Y_kmeans == 1, 0], X[Y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[Y_kmeans == 2, 0], X[Y_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(X[Y_kmeans == 3, 0], X[Y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
plt.scatter(X[Y_kmeans == 4, 0], X[Y_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()