machine-learning-atoz/section_8_natural_language_processing/main.py

52 lines
1.2 KiB
Python
Raw Permalink Normal View History

2024-10-25 11:48:10 +00:00
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
dataset = pd.read_csv("Restaurant_Reviews.tsv", delimiter="\t", quoting=3)
import re
# import nltk
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
# nltk.download('stopwords')
ps = PorterStemmer()
corpus = []
for i in range(0, 1000):
review = re.sub('[^a-zA-Z]', ' ', dataset['Review'][i])
review = review.lower()
review = review.split()
review = [ps.stem(word) for word in review if not word in set(stopwords.words('english'))]
review = ' '.join(review)
corpus.append(review)
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(max_features=1500)
X = cv.fit_transform(corpus).toarray()
Y = dataset.iloc[:, 1].values
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.20, random_state = 0)
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X_train, Y_train)
Y_pred = classifier.predict(X_test)
print(Y_pred)
print(Y_test)
count = 0
for i in range(0,len(Y_pred)):
if Y_pred[i] == Y_test[i]:
count += 1
print(count / len(Y_pred))